Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Huan Jing Ke Xue ; 44(10): 5737-5745, 2023 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-37827789

ABSTRACT

To explore the effects of single or combined application of chlorine-and sulfur-based fertilizers on rice bioavailability of Cd in soils, pot experiments with reddish clayey soil (developed from quaternary red clay parent materials) under three exogenous Cd levels (0, 0.5, and 2.0 mg·kg-1) were conducted. Meanwhile, chlorine-based fertilizers (KCl, NH4Cl) and sulfur-based fertilizers[K2SO4, (NH4)2SO4] were added in different proportions. The soil pH, Cd morphology, and Cd accumulation in rice at different growth stages were analyzed. The results revealed that both chlorine-and sulfur-based fertilizers could acidify the soil; however, the effect of chlorine-based fertilizers was more significant. During the filling stage of rice, the soil pH value of the treatment of applying single chlorine-based fertilizer decreased by 0.28 on average compared with that of applying single sulfur-based fertilizer. At the maturity stage of rice, chlorine-based fertilizer could activate the residual Cd, whereas sulfur-based fertilizer passivated the acid-extracted Cd to its residual state. Compared with the single application of the same fertilizer, the combined application of chlorine-and sulfur-based fertilizers was more likely to promote the accumulation of Cd in rice plants. The highest Cd accumulation of brown rice was 0.21 mg·kg-1 (2.0 mg·kg-1 exogenous Cd level) in the 1:1 (mole ratios of Cl:S) treatment of chlorine-and sulfur-based fertilizers, which was 16.4% higher than that of single chlorine-based fertilizer and 113.3% higher than that of single sulfur-based fertilizer. Therefore, the combined application of chlorine-fertilizers and sulfur-based fertilizers will increase the concentration of Cd in brown rice. To ensure food quality and safety, it is more advisable to apply single sulfur-based fertilizer for rice planting.


Subject(s)
Oryza , Soil Pollutants , Soil , Fertilizers/analysis , Chlorine/pharmacology , Cadmium/analysis , Biological Availability , Soil Pollutants/analysis , Halogens , Clay , Sulfur
2.
Huan Jing Ke Xue ; 41(8): 3862-3869, 2020 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-33124364

ABSTRACT

In order to clarify the effects of chelate tetrasodium glutamate diacetate (GLDA) on the remediation of cadmium (Cd) contaminated farmland by Pennisetum purpureum Schum, GLDA was applied in different methods within 60 days:total application doses of 585, 1170, and 2340 kg·hm-2 were equally divided into 1-4 applications, respectively, and the time intervals of 2-4 applications were 30, 20, and 15 days, respectively. The biomass, Cd content, and amount of Cd extracted from aboveground parts of Pennisetum purpureum Schum, in addition to the pH, dissolved organic carbon (DOC) mass concentration, and other indicators in soil were analyzed. The results showed that the biomass and Cd content of the aboveground parts of Pennisetum purpureum Schum increased significantly when GLDA was applied many times at a low application dose. The number of applications and the total dose were the key factors influencing the biomass and Cd content, respectively. The highest amount of Cd extracted was 16.78 g·hm-2 at 585 kg·hm-2 (applied four times), which was 275.39% higher than the CK treatment (i.e., no GLDA was applied). There was significant positive correlations between the pH, mass concentration of DOC, and content of DTPA-Cd, and the total dose and number of applications. The mass concentration of DOC was the main factor affecting the DTPA-Cd content. The total Cd content in the soil (after at 585 kg·hm-2 was applied four times) decreased by 3.23% compared with that of the soil before planting Pennisetum purpureum Schum. Therefore, the application of GLDA is of great significance for the remediation of Cd contaminated farmland by Pennisetum purpureum Schum, and the application method should be selected reasonably.


Subject(s)
Pennisetum , Soil Pollutants , Biodegradation, Environmental , Cadmium/analysis , Farms , Glutamic Acid , Soil , Soil Pollutants/analysis
3.
Huan Jing Ke Xue ; 41(7): 3418-3425, 2020 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-32608916

ABSTRACT

To explore the effects of water management mode on Cd environmental behavior in different parent-material-developed paddy soils, two parent-material-developed paddy soils (yellow clayey soil and granitic sandy soil) under three exogenous Cd levels (0.5, 2.0, and 5.0 mg·kg-1) with different water management modes (long-term flooding, moistening irrigation, and wet-dry rotation) were cultured in this study. The soil redox potential (Eh value), pH value, Cd concentration in soil solution, and Cd fractionation were also determined. The results showed that water management mode had different effects on the pH and Eh values of soils developed from different parent materials. The change rates of soil pH value were as follows:long-term flooding:-2.61% (yellow clayey soil), 2.25% (granitic sandy soil); alternation of dry and wet:-1.96% (yellow clayey soil); 0.52% (granitic sandy soil); wet irrigation:-4.08% (yellow clayey soil) and -0.52% (granitic sandy soil). The Eh value of the soils was negatively correlated with the pH value. The influence pattern of water management model on Cd mass concentration of soil solutions in two parent-material soils was consistent. The Cd mass concentration of soil solutions in granitic sandy soil was higher than that in yellow clayey soil. The mean values of Cd concentration were 1.03 µg·L-1 for yellow clayey soil and 1.07 µg·L-1 for granitic sandy soil. Water management mode had no significant effect on the proportions of organic bound Cd or Fe-Mn bound Cd in two different parent-material-developed soils. The long-term flooding mode promoted the transformation of exogenous Cd to residual Cd, and this promotion in yellow clayey soil was higher than that in granitic sandy soil. In conclusion, during the process of regulating soil Cd bioavailability through water management, the role of soil parent materials needs to be considered.

4.
Huan Jing Ke Xue ; 40(7): 3324-3330, 2019 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-31854734

ABSTRACT

By conducting field positioning experiments, we studied the development trend of Cd pollution in a typical paddy system. The samples of atmospheric deposition and irrigation water were collected monthly from November 2015 to November 2018 during which fertilizer, soil, and rice samples were also collected. The Cd concentration in the samples was monitored and analyzed to conduct research on the balance between Cd inputs and outputs in a typical paddy system in Hunan Province. The results suggest that through irrigation water, atmospheric deposition and fertilizer, the average annual input of Cd in the paddy field system is 8.735 g·(hm2·a)-1, of which atmospheric deposition, the major source, accounts for 69.15%-82.04% of the total input, with an average of 76.61%. This is followed by irrigation water and fertilizer, respectively, accounting for 12.62%-23.66% and 5.34%-7.19%, with an average of 16.94% and 6.45%, respectively. Through surface runoff, soil infiltration and the rice harvest of the aboveground portion, the annual average output of Cd contained in the paddy system is 7.093 g·(hm2·a)-1. Rice harvest accounts for 85.27%-95.02% of the total output, with an average of 89.69%; surface runoff accounted for 4.57%-13.96% of the total output, with an average of 9.41%; and soil infiltration accounted for 0.41%-1.51% of the total output, with an average of 0.90%. The study indicates that Cd contained in paddy systems in Central Hunan exhibits a net input, and the soil Cd pollution is increasing as a result. Straw returning and straw removal have an important impact on the soil Cd balance, and straw removal can slow the trend of soil Cd pollution accumulation.


Subject(s)
Cadmium/analysis , Oryza , Soil Pollutants/analysis , Agricultural Irrigation , Fertilizers , Soil/chemistry
5.
Huan Jing Ke Xue ; 39(1): 406-414, 2018 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-29965708

ABSTRACT

Pot experiments were used to study the differences of Cd uptake and accumulation in double-cropping rice in typical soil types. To analyze the soil availability of Cd (DTPA-Cd) in soils and the Cd accumulation in double-cropping rice at different growth stages of the rice, we conducted pot experiments that selected the yellow clayey soil (paddy soil developed from plate shaley parent materials) and the granitic sandy soil (paddy soil developed from granitic parent materials). Exogenous Cd was added with gradients of 0, 0.5, 1.0, 2.0, 5.0, and 10.0 mg·kg-1. Results showed that, during the rice growth period, the available Cd in the yellow clayey soil was higher than that in the granitic sandy soil, and the difference was significant (P<0.01). This showed that the content of Cd in rice (roots, shoots, leaves, rice shells, and brown rice) increased along with the treatment level and with the extension of the rice growth period. The accumulation characteristics of Cd in rice grains and other tissues of rice indicated differences between two seasons and two soil types, that is, late rice was higher in Cd than was early rice, and reddish yellow clayey soil was higher in Cd than granitic sandy soil. Significant positive linear correlations were found between the effective contents of Cd in soils and those in rice tissues (roots, shoots, leaves, and brown rice). The prediction model of Cd in rice and the characteristic equation for rice accumulation of Cd were applied to calculate the critical values of Cd:0.98 mg·kg-1 for early rice and 0.83 mg·kg-1 for late rice in reddish yellow clayey soil, and 0.86 mg·kg-1 for early rice and 0.56 mg·kg-1 for late rice in granitic sandy soil. These threshold values are higher than the National Standards given in "farmland environmental quality evaluation standards for edible agricultural products (HJ 332-2006)." The soil security threshold values and the soil environmental capacities of the two different parent materials varied greatly; therefore, different environmental quality standards may be formulated and different measures may be needed to control Cd pollution in different parent materials.


Subject(s)
Cadmium/analysis , Oryza/growth & development , Soil Pollutants/analysis , Soil/chemistry , Agriculture , Oryza/chemistry
6.
Huan Jing Ke Xue ; 38(6): 2538-2545, 2017 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-29965375

ABSTRACT

Pot experiments were used to study the correlations between different extractable cadmium levels in typical soil and cadmium accumulation in rice. To analyze the pH, Cd in soil solution(SSE-Cd), TCLP extractable Cd level(TCLP-Cd), and Cd accumulation in rice at different growth stages of rice, we conducted pot experiments which selected the reddish clayey soil(developed from quaternary red clay parent materials) and purple paddy field(developed from purple sandy shale parent materials), meanwhile added with exogenous Cd with the gradients of 0, 0.5, 1, 2, 5, 10 mg·kg-1. The results showed that, during the rice growth period, the content of SSE-Cd in reddish clayey soil was in the range of 0 and 2.5 µg·L-1, and the average content was 0.57 µg·L-1; TCLP-Cd was in the range of 0 and 0.25 µg·L-1 with the average content of 0.10 mg·kg-1;The content of SSE-Cd in purple paddy field was in the range of 0 and 1.6 µg·L-1 with the average content of 0.48 µg·L-1; TCLP-Cd was in the range of 0 and 0.2 mg·kg-1, and the average content was 0.07 mg·kg-1. It showed that the cadmium concentrations in soil solution and the TCLP extractable Cd levels were both significantly reduced in two types of soil with the extension of rice growth period, and the content in reddish clayey soil was higher than that in purple paddy. The TCLP extractable Cd level was significantly positively correlated with Cd concentration in soil solution. The total Cd accumulation in rice plants gradually increased with increasing exogenous Cd concentration. There were significant positive correlations between Cd concentration in soil solution and Cd concentration in rice, Cd concentration in soil extracted by TCLP method and Cd concentration in rice and total Cd accumulation in rice plant. The soil environmental capacities of the two different parent materials varied greatly,and the safety threshold of Cd in purple paddy field was 2.06 times of that of reddish clayey soil. There were significant differences in Cd uptake and accumulation in different soils, so different measures may be needed to control Cd pollution in different parent materials. TCLP extractable Cd was more relevant with total Cd accumulation in rice, and had more extraction amount. Therefore, the TCLP method can more accurately evaluate the biological availability of soil Cd.


Subject(s)
Cadmium/chemistry , Oryza/metabolism , Soil Pollutants/chemistry , Biological Availability , Soil/chemistry
7.
Huan Jing Ke Xue ; 36(10): 3809-15, 2015 Oct.
Article in Chinese | MEDLINE | ID: mdl-26841616

ABSTRACT

To clarify altitudinal gradient of subtropical forest soil total nitrogen and organic nitrogen, soil samples were collected per 10 cm on soil profile (0-100 cm) in Dawei Mountain, researched the variation of soil organic nitrogen and correlation with soil physical and chemical properties. The results showed that: (1) Total nitrogen, acid hydrolysable organic nitrogen and soluble organic nitrogen decreased with the increase of depth, content of each component in mountain granite yellow-brown soils was much higher affected by altitude; (2) The average percentage of soil organic nitrogen to total nitrogen was 97.39% ± 1.17%, and soil acid hydrolysable organic nitrogen was 64.38% ± 10.68%, each component decreased with the increase of soil depth; (3) Soil soluble organic nitrogen content was 9.92- 23.45 mg x kg(-1), free amino acids (1.62 - 12.02 mg x kg(-1)) accounted for about 27.36% ± 9.95% of soluble organic nitrogen; (4) Soil acid hydrolysable organic nitrogen and soluble organic nitrogen were significantly positively correlated with total nitrogen, total soluble nitrogen and inorganic nitrogen (P < 0.05), were highly significantly correlated with soil bulk density, organic carbon, and total phosphorus (P < 0.01). Organic nitrogen was the main body of soil nitrogen in typical subtropical forest, each component showed a downward trend increase with soil depth affected by altitude and soil physical and chemical properties. There was a close conversion relationship between soil organic nitrogen and other nitrogen forms, the characteristics of soil organic nitrogen will have profound impact on nitrogen cycling of forest ecological system.


Subject(s)
Forests , Nitrogen Cycle , Nitrogen/analysis , Soil/chemistry , Altitude , China , Organic Chemicals/analysis , Phosphorus/analysis
8.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 8): o2366, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22904831

ABSTRACT

In the cation of the title compound, C(16)H(14)N(3) (+)·Cl(-)·2H(2)O, the cyclo-hexa-1,3-diene ring displays a screw-boat conformation and the pyridine ring is slightly twisted with respect to the pyrazole ring with a dihedral angle of 4.56 (12)°. In the crystal, ions and water mol-ecules are linked into a three-dimensional network by classical N-H⋯O, N-H⋯Cl, O-H⋯Cl and O-H⋯O hydrogen bonds and by π-π stacking inter-actions, with centroid-centroid distances of 3.7580 (14) and 3.7794 (14) Å.

10.
Huan Jing Ke Xue ; 30(4): 1139-45, 2009 Apr 15.
Article in Chinese | MEDLINE | ID: mdl-19545020

ABSTRACT

Dynamics of immobilization of the labeled substrate N by microorganism and soil clay and its residue fractions in soils from the plough layers of two subtropical paddy soils (Reddish clayey soil, Purple alluvial soil) in the Dongting Lake floodplain were studied. A laboratory-flooded incubation experiment was composed of three treatments: control (CK), labeled ammonium sulphate group (15NA) and the combined of labeled ammonium sulphate and rice straw group (S + 15NA). During the incubation, microbial biomass N (BN) increased firstly and then those decreased and tended to stable subsequently, while the content of fixed ammonium changed little. Native BN acted as the major N pool because the percentage-of labeled substrate BN in reddish clayey soil and purple alluvial soil were 0.30%-6.67% and 1.00%-3.47%, respectively. The combined application of rice straw and chemical fertilizer (S + 15NA) improved the immobilization of inorganic N by microorganism, because the immobilization ratio of substrate N in reddish soil and purple alluvial soil were 6.78% and 10.78%, respectively, for S + 15NA treatment, higher than those for 15NA treatment. The immobilization ratio of substrate N by soil clay in reddish clayey soil and purple alluvial soil were 2.48%-10.57% and 12.55%-30.04%, respectively. However, the immobilization ratio of substrate N by soil clay in the two soils were 7.14% and 21.53%, respectively, for S + 15NA treatment, lower than those for NA treatment. The incorporation of chemical fertilizer and rice straw increased the N remain percent. The main residue formation of the labeled substrate N was total hydrolysable N (> 72%) in Reddish clayey soil, while it was total hydrolysable N (44.0%-53.2%) and fixed ammonium (35.2%-37.5%) in Purple alluvial soil. The residue of mineral nitrogen ranged 10%-20% in the two soils. In conclusion, fertilization method and the type of soil clay had important effects on the immobilization and mineralization of substrate N. The combined application of chemical fertilizer and straws increased the immobilization of inorganic nitrogen by microorganism and decreased immobilization of inorganic nitrogen by soil clay. The combined application of chemical fertilizer and straws decreased the loss of chemical fertilizer N, increased residue of nonhydrolysable N, and decreased residue of mineral nitrogen.


Subject(s)
Nitrogen/metabolism , Oryza/metabolism , Quaternary Ammonium Compounds/metabolism , Soil Microbiology , Soil Pollutants/analysis , Aluminum Silicates/analysis , China , Clay , Implosive Therapy , Nitrogen/chemistry , Oryza/growth & development , Quaternary Ammonium Compounds/chemistry , Soil/analysis
11.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 12): o3054, 2009 Nov 11.
Article in English | MEDLINE | ID: mdl-21578786

ABSTRACT

In the title mol-ecule, C(9)H(8)N(2)O(2), the dihedral angle between the pyridine and the pyrrolidine rings is 64.58 (12)°. In the crystal structure, weak C-H⋯π-electron ring inter-actions stabilize the packing.

SELECTION OF CITATIONS
SEARCH DETAIL
...